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Abstract

To establish that a document was created after a given moment in time, it
is necessary to report events that could not have been predicted before they
happened. To establish that a document was created before a given moment
in time, it is necessary to cause an event based on the document, which can be
observed by others. Cryptographic hash functions can be used both to report
events succinctly, and to cause events based on documents without revealing
their contents. Haber and Stornetta have proposed two schemes for digital
time-stamping which rely on these principles [HaSt 91].

We reexamine one of those protocols, addressing the resource constraint
required for storage and verification of time-stamp certificates. By using trees,
we show how to achieve an exponential increase in the publicity obtained for
each time-stamping event, while reducing the storage and the computation
required in order to validate a given certificate.

We show how time-stamping can be used in certain circumstances to extend
the useful lifetime of different kinds of cryptographic certifications of authen-
ticity, in the event that the certifying protocol is compromised. This can be
applied to digital signatures, or to time-stamping itself, making the digital
time-stamping process renewable.
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1 Introduction

Causality fixes events in time. If an event was determined by certain earlier events,
and determines certain subsequent events, then the event is sandwiched securely
into its place in history. Fundamentally, this is why paper documents have forensic
qualities allowing them to be accurately dated and examined for signs of after-the-fact
tampering. However, documents kept in digital form need not be closely tied to any
physical medium, and tampering may not leave any tell-tale signs in the medium.

Could an analogous notion of causality be applied to digital documents to correctly
date them, and to make undetected tampering infeasible? Any solution would have
to time-stamp the data itself, without any reliance on the properties of a physical
medium, and would be especially useful and trustworthy if the date and time of the
time-stamp could not be forged.

In [HaSt 91], Haber and Stornetta posed this problem, and proposed two solutions.
Both involve the use of cryptographic hash functions (discussed in §2 below), whose
outputs are processed in lieu of the actual documents. In the linking solution, the
hash values of documents submitted to a time-stamping service are chained together
in a linear list into which nothing can feasibly be inserted or substituted and from
which nothing can feasibly be deleted. This latter property is insured by a further
use of cryptographic hashing. In the random-witness solution, several members of
the client pool must date and sign the hash value; their signatures form a composite
certification that the time-stamp request was witnessed. These members are chosen
by means of a pseudorandom generator that uses the hash of the document itself as a
seed. This makes it infeasible to deliberately choose which clients should and should
not act as witnesses.

In both of these solutions, the record-keeping requirements per time-stamping
request are proportional to the number of (implicit) observers of the event. In §3 below
we address the following problem: What if an immense flood of banal transactions
want their time-stamps to become part of the historical record, but history just isn’t
interested? We propose to merge many unnoteworthy time-stamping events into one
noteworthy event, using a tournament run by its participants. The winner can be
easily and widely publicized. Each player, by remembering a short list of opponents,
can establish participation in the tournament. We do this by building trees in place
of the linked list of the linking solution, thus achieving an exponential increase in the
number of observers. Such hash trees were previously used by Merkle [Merk 80] for
a different purpose, to produce authentication certificates for a directory of public
enciphering keys.

There are several ways in which a cryptographic system can be compromised. For
example, users’ private keys may be revealed; imprudent choice of key-lengths may be
overtaken by an increase in computing power; and improved algorithmic techniques
may render feasible the heretofore intractable computational problem on which the
system is based. In §4 below we show how time-stamping can be used in certain
circumstances to extend the useful lifetime of digital signatures. Applying the same
technique to time-stamping itself, we demonstrate that digital time-stamps can be
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renewed.

Finally, in §5 we discuss the relationships between the different methods of digital
time-stamping that have been proposed.

2 Hash functions

The principal tool we use in specifying digital time-stamping schemes, here as in
[HaSt 91], is the idea of a cryptographic hash function. This is a function compressing
digital documents of arbitrary length to bit-strings of a fixed length, for which it is
computationally infeasible to find two different documents that are mapped by the
function to the same hash value. (Such a pair is called a collision for the hash
function.) Hence it is infeasible to fabricate a document with a given hash value. In
particular, a fragment of a document cannot be extended to a complete document
with a given hash value, unless the fragment was known before the hash value was
created. In brief, a hash value must follow its associated document in time.

There are practical implementations of hash functions, for example those of Rivest
[Riv 90] and of Brachtl, et al. [BC+ 88], which seem to be reasonably secure.

In a more theoretical vein, Damgard defined a family of collision-free hash func-
tions to be a family of functions h : {0, 1}∗ → {0, 1}l compressing bit-strings of
arbitrary length to bit-strings of a fixed length l, with the following properties:

1. The functions h are easy to compute, and it is easy to pick a member of the
family at random.

2. It is computationally infeasible, given a random choice of one of these functions
h, to find a pair of distinct strings x, x′ satisfying h(x) = h(x′).

He gave a constructive proof of their existence, on the assumption that there ex-
ist one-way “claw-free” permutations [Dam 87]. For further discussion of theoretical
questions relating to the existence of families of cryptographic hash functions (vari-
ously defined) see [HaSt 91] and the references contained therein.

In the rest of this paper, we will assume that a cryptographic hash function h is
given: either a particular practical implementation, or one that has been chosen at
random from a collision-free family.

3 Trees

In the linking scheme, the challenger of a time-stamp is satisfied by following the
linked chain from the document in question to a time-stamp certificate that the
challenger considers trustworthy. If a trustworthy certificate occurs about every N
documents, say, then the verification process may require as many as N steps. We
may reduce this cost from N to log N , as follows.

Suppose we combine the hash values of two users’ documents into one new hash
value, and publicize only the combined hash value. (We will consider a “publicized”
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value to be trustworthy.) Either participant, by saving his or her own document
as well as the other contributing hash value, can later establish that the document
existed before the time when the combined hash value was publicized.

More generally, suppose that N hash values are combined into one via a binary
tree, and the resulting single hash value is widely publicized. To later establish
priority, a participant need only record his own document, as well as the �log2 N�
hash values that were directly combined with the document’s hash value along the
path to the root of the tree. In addition, along with each combining hash value, the
user needs to record its “handedness,” indicating whether the newly computed value
was placed before or after the combining hash value. Verification consists simply of
recomputing the root of the tree from this data.

Once hashing functions are chosen, such a scheme could be carried out like a world
championship tournament: Heterogeneous local networks could govern local subtrees
under the scrutiny of local participants, and regional “winners” could be combined
into global winners under the scrutiny of all interested parties. Global communication
facilities are required, and a broadcast protocol must be agreed upon, but no central-
ized service bureau need administer or profit from this system. For example, given
any protocol acceptable separately to the western and eastern hemispheres for estab-
lishing winners for a given one-hour time period, the winners can be broadcast by
various members of the respective hemispheres, and anyone who wants to can carry
out the computations to determine the unique global winner for that time period.
Winners for shorter time periods can similarly be combined into unique winners for
longer time periods, by any interested party.

At a minimum, daily global winners could be recorded in newspaper advertise-
ments, to end up indefinitely on library microfilm. The newspaper functions as a
widely available public record whose long-term preservation at many locations makes
tampering very difficult. An individual who retains the set of values tracing the path
between his document and the hash value appearing in the newspaper could establish
the time of his document, without any reliance on other records. Anyone who wishes
to be able to resolve time-stamps to greater accuracy needs only to record time-stamp
broadcasts to greater accuracy.

4 Using time-stamping to extend the lifetime of a

threatened cryptographic operation

The valid lifetime of a digitally signed document can be extended with digital time-
stamping, in the following way. Imagine an implementation of a particular digital
signature scheme, with a particular choice of key lengths, and consider a plaintext
document D and its digital signature σ by a particular user. Now let the pair (D, σ)
be time-stamped. Some time later the signature may become invalid, for any of a
variety of reasons, including the compromise of the user’s private key, an increase
in available computing power making signatures with keys of that length unsafe, or
the discovery of a basic flaw in the signature scheme. At that point, the document-
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signature pair becomes questionable, because it may be possible for someone other
than the original signer to create valid signatures.

However, if the pair (D, σ) was time-stamped at a time before the signature was
compromised, then the pair still constitutes a valid signature. This is because it is
known to have been created at a time when only legitimate users could have pro-
duced it. Its validity is not in question even though new signatures generated by the
compromised method might no longer be trustworthy.

The same technique applies to other instances of cryptographic protocols. In
particular, the technique can be used to renew the time-stamping process itself. Once
again, imagine an implementation of a particular time-stamping scheme, and consider
the pair (D, C), where C is a valid time-stamp certificate (in this implementation) for
the document D. If (D, C) is time-stamped by an improved time-stamping method
before the original method is compromised, then one has evidence not only that
the document existed prior to the time of the new time-stamp, but that it existed
at the time stated in the original certificate. Prior to the compromise of the old
implementation, the only way to create a certificate was by legitimate means. (The
ability to renew time-stamps was mentioned in [HaSt 91] but an incorrect method
was given. The mistake of the previous work was in assuming that it is sufficient
to renew the certificate alone, and not the document-certificate pair. This fails, of
course, if the compromise in question is a method of computing hash collisions for
the hash function used in submitting time-stamp requests.)

5 Different methods of time-stamping

To date, three different digital time-stamping techniques have been proposed: linear
linking, random witness and linking into trees. What is the relationship between
them? Does one supersede the others? Initially, one might think that trees satisfy
time-stamping requirements better than the two previously proposed methods, be-
cause the tree protocol seems to reduce storage requirements while increasing the
number of interested parties who serve as witnesses. But there are other tradeoffs to
consider.

First we consider the linking protocol. In certain applications, such as a laboratory
notebook, it is crucial not only to have a trustworthy date for each entry but also to
establish in a trustworthy manner the exact sequence in which all entries were made.
Linear linking of one entry to the next provides the most straightforward means of
achieving this.

Next we consider the difference between the random-witness method and the tree
method. While trees increase the number of witnesses to a given time-stamping event
in proportion to the number of documents time-stamped, they do not guarantee a
minimum number of witnesses. Neither do they guarantee that witnesses will retain
their records. In contrast, in random witness the effective number of witnesses is the
entire population, though only a small fraction are actually involved in any given
time-stamping event. Furthermore, the set of signatures computed by the random-
witness protocol explicitly creates a certificate which is evidence that a time-stamping
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event was widely witnessed. Thus, the protocol does not depend for its final valid-
ity on witnesses keeping records. Random witness is somewhat analogous to placing
an advertisement in the newspaper, as discussed earlier, but with an additional re-
finement. Like the newspaper ad, it is effectively a widely witnessed event, but in
addition it creates a record of the witnessing.

Given these tradeoffs, we imagine that the three methods may be used in a com-
plementary fashion, as the following example illustrates. An individual or company
might use linear linking to time-stamp its own accounting records, sending the final
summary value for a given time period to a service maintained by a group of indi-
viduals or parties. This service constructs linked trees at regular intervals. The root
of each tree is then certified as a widely viewed event by using the random-witness
protocol among the participants. In this way, individual and group storage needs can
be minimized, and the number of events which require an official record of witnessing
can be greatly reduced.
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